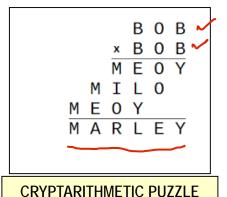
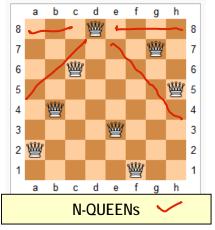
SEARCH IN AI

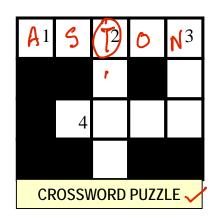
CONSTRAINT SATISFACTION PROBLEMS (CGP)

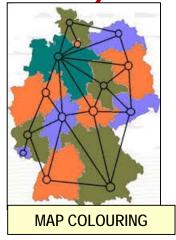
Partha P Chakrabarti
Indian Institute of Technology Kharagpur

guén a configuration valid configuration solve a set of constraints **Constraint Satisfaction Problems (CSPs)**

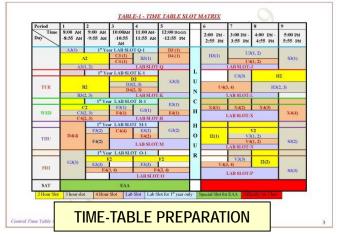


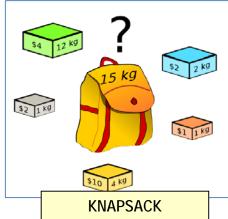






Interr	national Departu	ires		
Flight No	Destination	Time	Gate	Remarks
night No	Destination	Time	Gate	1400000000
CX7183	Berlin	7:50	A-11	Gate closing
QF3474	London	7:50	A-12	Gate closing
BA372	Paris	7:55	B-10	Boarding
AY6554	New York	8:00	C-33	Boarding
(L3160	San Francisco	8:00	F-15	Boarding
3A8903	Manchester	8:05	B-12	Gate lounge open
BA710	Los Angeles	8:10	C-12	Check-in open
)F3371	Hong Kong	8:15	F-10	Check-in open
MA4866	Barcelona	8:15	F-12	Check-in at kiosks
	Copenhagen	8:20	G-32	Check-in at kiosks

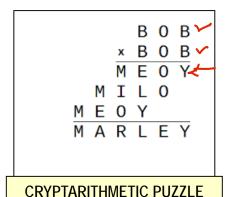


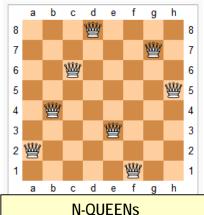


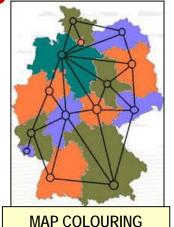
Basic CSP Formulation

- Variables
 - A Finite Set of Variables V_1, V_2,, V_n
- Domains
 - Each Variable has a Domain D_1, D_2,, D_n from which it can take a value.
 - The Domains may be discrete or continuous domains
- Satisfaction Constraints
 - A Finite Set of Satisfaction Constraints, C_1, C_2, ...C_m
 - Constraints may be unary, binary or be among many variables of the domain
 - All Constraints have a Yes / No Answer for Satisfaction given values of variables
- Optimization Criteria (Optional)
 - A Set of Optimization Functions O_1, O_2,O_p
 - These Optimization Functions are typically max or min type
- Solution
 - To Find a Consistent Assignment of Domain Values to each Variable so that All Constraints are Satisfied and the Optimization Criteria (if any) are met.

Formulating CSPs







- 1. VARIABLES
- 2. DOMAINS
- 3. SATISFACTION CONSTRAINTS
- 4. OPTIMIZATION CRITERIA
- 5. SOLUTION

row is a variable

D: a, b,, h

Constraints

Voriables

Domain: 20,1,2,3,4,5,6,77,8,97

7,8,9} Constraints: - Uniqueness Mutuplication operator

B, O, M, E, Y, I, L, R

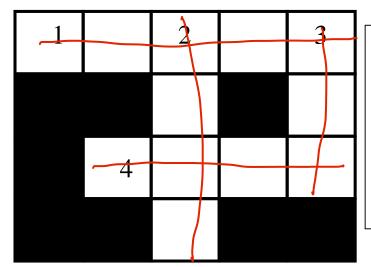
region: Variable

21,2,33

Demain

min no of abouts

Formulating CSPs: Crossword



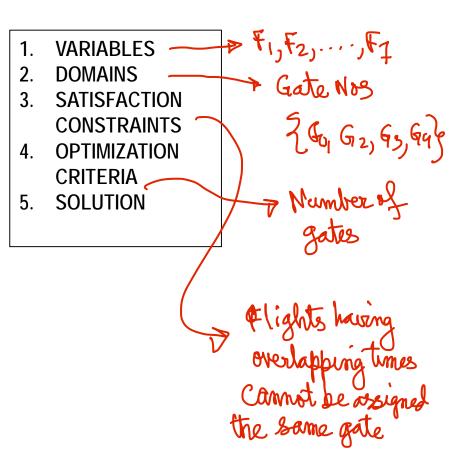
Word List:

astar, happy, hello, hoses, live, load, loom, peal, peel, save, talk, ant, oak, old

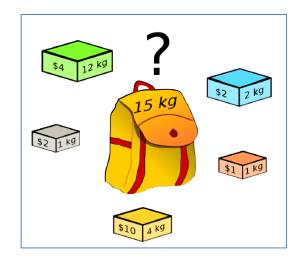
- 1. VARIABLES
- 2. DOMAINS
- 3. SATISFACTION CONSTRAINTS
- 4. OPTIMIZATION CRITERIA
- 5. SOLUTION

Formulating CSPs: Flight Gate Scheduling

Flight No	Dep Time	G Start	G End
FÎ)	7:00	6:15	7:15
F2	8:30	7:45	8:45 🗸
(F3)	7:45	7:00	8:00
F4	9:45	9:00	10:00
F5	10:00	9:15	10:15
F6	9:00	8:15	9:15
F7	11:00	10:15	11:15
7 flights	\uparrow	4	4



Formulating CSPs: Knapsack



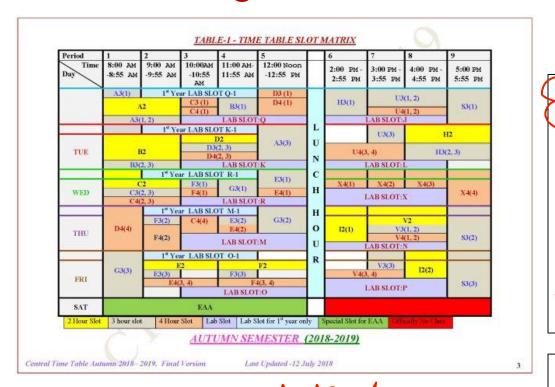
$$S = \{8_1, 8_2, \dots, 8_n\}$$
 $W = \{W_1, W_{23}, \dots, W_n\}$
 $V = \{V_1, V_{23}, \dots, V_n\}$
 $C = \{abecity\}$

- 1. VARIABLES
- 2. DOMAINS
- 3. SATISFACTION CONSTRAINTS
- 4. OPTIMIZATION CRITERIA
- 5. SOLUTION

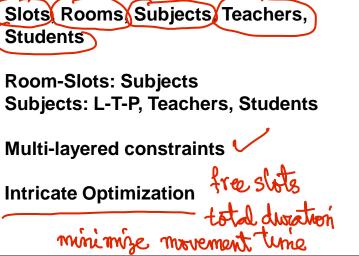
$$\frac{n}{\sum (s_i.w_i)} \leq c \times$$

$$\max \left(\sum_{i=1}^n s_i.v_i \right)$$

Formulating CSPs: Time Table



- 2. DOMAINS
- 3. SATISFACTION CONSTRAINTS
- 4. OPTIMIZATION CRITERIA
- SOLUTION



Exercise: Time-Tabling in the era of online classes

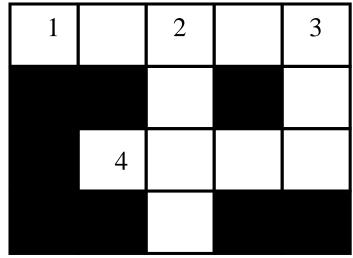
3 lectures/week

. -2

CSP Solution Overview

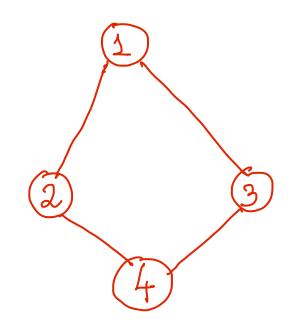
- CSP Graph Creation:
 - Create a Node for Every Variable. All possible Domain Values are initially Assigned to the Variable
 - Draw edges between Nodes if there is a Binary Constraint. Otherwise Draw a <u>hyper-edge</u> between nodes with constraints involving more than two variables.
- Constraint Propagation:
 - Reduce the Valid Domains of Each Variable by Applying Node Consistency, Arc / Edge Consistency (K-Consistency, till no further reduction is possible. If a solution is found or the problem found to have no consistent solution, then terminate
- Search for Solution:
 - Apply Search Algorithms to Find Solutions
 - There are interesting properties of CSP graphs which lead of efficient algorithms in some cases: Trees, Perfect Graphs, Interval Graphs, etc
 - Issues for Search: <u>Backtracking</u> Scheme, <u>Ordering</u> of Children, <u>Forward Checking</u> (Look-Ahead) using Dynamic Constraint Propagation
 - Solving by <u>Converting to Satisfiability (SAT)</u> problems

CSP Graph for Crossword



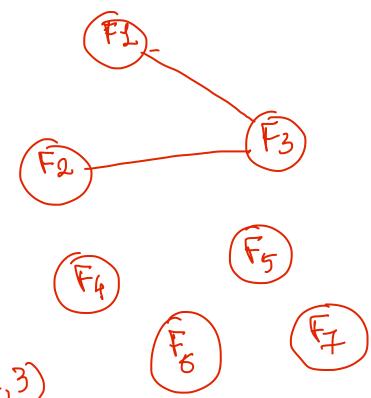
Word List:

astar, happy, hello, hoses, live, load, loom, peal, peel, save, talk, ant, oak, old



CSP Graph for Airline Gate Scheduling

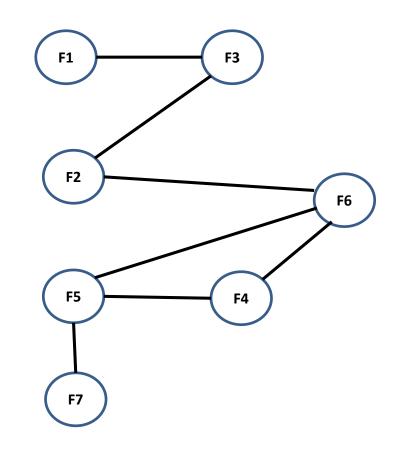
Flight No	Dep Time	G Start	G End
F1 .	7:00	6:15	7:15 ~
F2 '	8:30	7:45	8:45
F3	7:45	7:00	8:00
F4	9:45	9:00	10:00 🗸
F5	10:00	9:15	10:15
F6	9:00	8:15	9:15
F7	11:00	10:15	11:15



CSP Graph for Airline Gate Scheduling

Flight No	Dep Time	G Start	G End
F1	7:00	6:15	7:15
F2	8:30	7:45	8:45
F3	7:45	7:00	8:00
F4	9:45	9:00	10:00
F5	10:00	9:15	10:15
F6	9:00	8:15	9:15
F7	11:00	10:15	11:15

minimize Dem: 7 Ga



Constraint Propagation Steps

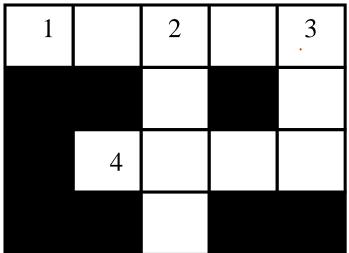
Constraints

- Unary Constraints or Node Constraints
- Binary Constraints or Edges between CSP Nodes
- Higher order or Hyper-Edges between CSP Nodes v

Node Consistency ∨

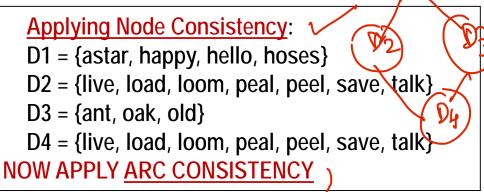
- For every Variable V_i, remove all elements of D_i that do not satisfy the Unary Constraints for the Variable
- First Step is to reduce the domains using Node Consistency
- Arc Consistency X Edge Consistency
 - For every element x_ij of D_i, for every edge from V_i to V_j, remove x_ij if it has no consistent value(s) in other domains satisfying the Constraints
 - Continue to iterate using Arc Consistency till no further reduction happens.
- K-Consistency or Path Consistency
 - For every element y_ij of D_i, choose a Path of length L with L variables, use a consistency checking method similar to above to reduce domains if possible

CSP Graph for Crossword



Word List:

astar, happy, hello, hoses, live, load, loom, peal, peel, save, talk, ant, oak, old



Applying Arc Consistency:

D1 = {astar, happy, hello, hoses}

D2 = {live, load, loom, peal, peel, save, tak}

 $D3 = \{ant, oak, old\}$

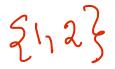
D4 = {live, load, loom, peal, peel, save, talk}

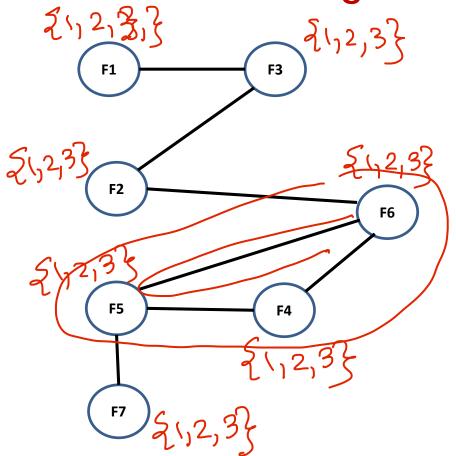
Arc Consistency Algorithm AC-3

```
AC-3(csp) // inputs - CSP with variables, domains, constraints
                                                                    Q= 2 all edges 4
     queue ← local variable initialized to all arcs in csp
     while queue is not empty do
        (X_i, X_i) \leftarrow \text{pop(queue)} \lor
        if Revise(csp, X_i, X_j) then \angle
          if size of D_i = 0 then return false
           for each X_k in X_i.neighbors-\{X_i\} do
             add (X_k, X_i) to queue \nearrow
8.
     return true
Revise(csp, X_i, X_i)
     revised \leftarrow false
     for each x in D_i do
3.
        if no value y in D_i allows (x, y) to satisfy constraint between X_i and X_i then
           delete x from Di
4.
           revised \leftarrow true
     return revised
                                                                Time complexity
```

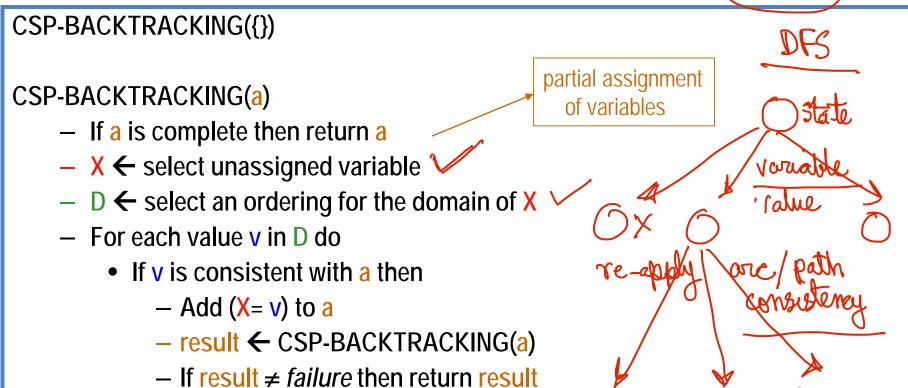
Consistency for Airline Gate Scheduling

Flight No	Dep Time	G Start	G End
F1	7:00	6:15	7:15
F2	8:30	7:45	8:45
F3	7:45	7:00	8:00
F4	9:45	9:00	10:00
F5	10:00	9:15	10:15
F6	9:00	8:15	9:15
F7	11:00	10:15	11:15





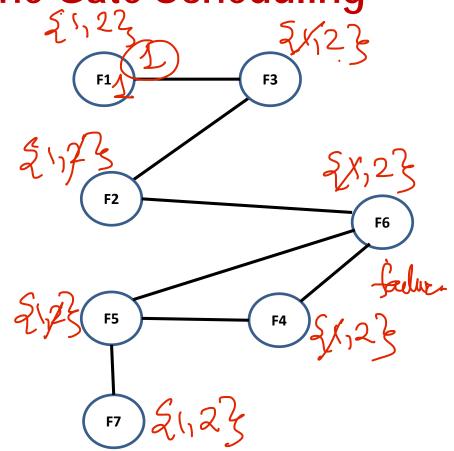
Backtracking Algorithm for CSP

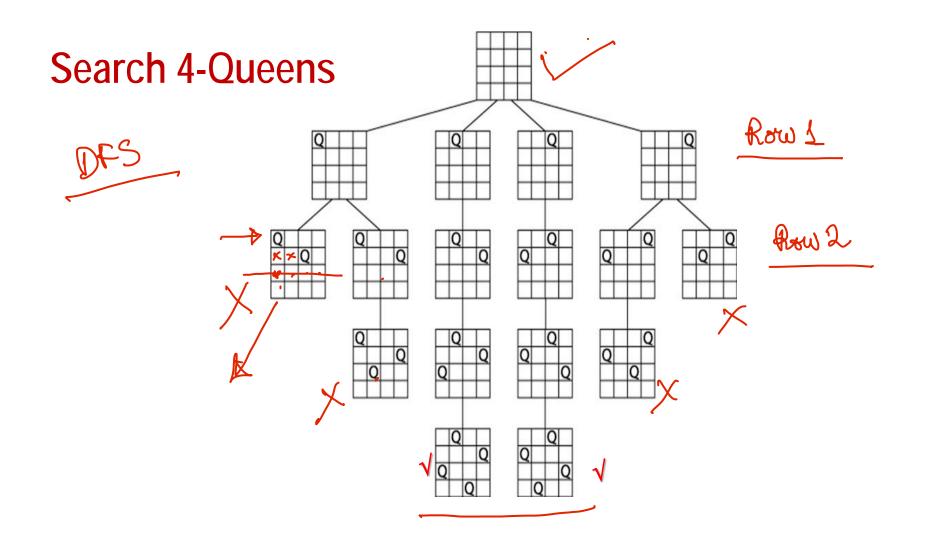


Return failure

Backtracking for Airline Gate Scheduling

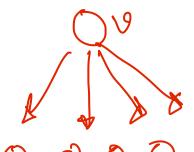
Flight No	Dep Time	G Start	G End
F1	7:00	6:15	7:15
F2	8:30	7:45	8:45
F3	7:45	7:00	8:00
F4	9:45	9:00	10:00
F5	10:00	9:15	10:15
F6	9:00	8:15	9:15
F7	11:00	10:15	11:15





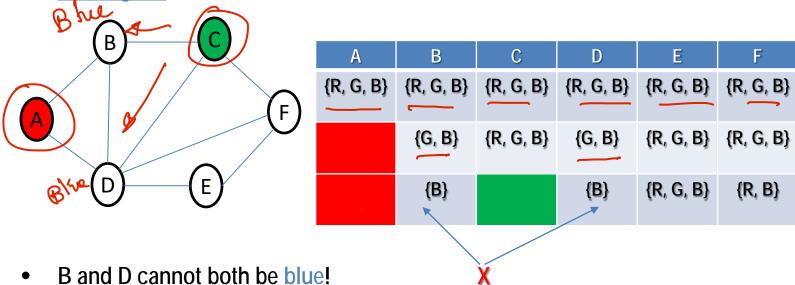
Strategies for CSP Search Algorithms

- Initial Constraint Propagation
- Backtracking Search
 - Variable Ordering
 - Most Constrained Variable / Minimum Remaining Values
 - Most Constraining Variable
 - Value Ordering
 - Least Constraining Value leaving maximum flexibility
 - Dynamic Constraint Propagation Through Forward Checking
 - Preventing useless Search ahead
 - Dependency Directed Backtracking \(\sqrt{\lambda} \)
- SAT Formulations and Solvers
- Optimization
 - Branch-and-Bound
 - SMT Solvers, Constraint Programming
- Learning, Memoizing, etc
- CSP Problems are NP-Hard in General



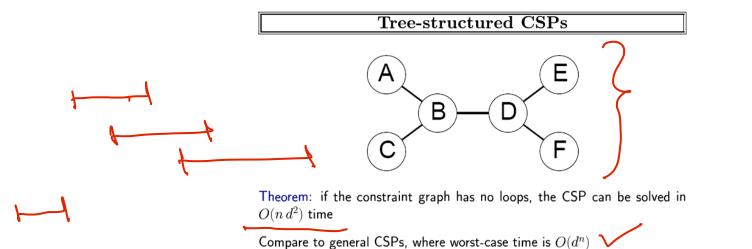
Forward Checking: 3 Colouring Problem

Forward checking propagates information from assigned to unassigned variables



- Why did we not detect this?
- Forward checking detects some inconsistencies, not all
- Constraint propagation: reason from constraint to constraint

Special Cases



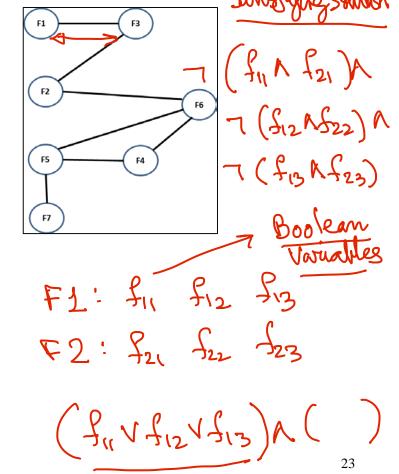
nd³

For PERFECT GRAPHS, CHORDAL GRAPHS, <u>INTERVAL GRAPHS</u>, the Graph Colouring Problem can be solved in Polynomial Time

9/11/2020 22

Solving CSP using SAT / SMT Solvers

- Boolean Satisfiability (SAT) is a CSP
- CSPs can be modelled as SAT problems
 - Try: Map Colour, Gate Scheduling, n-Queens
 - Home Exercise: Write a Generic Scheme to Convert and CSP Problem to a SAT Problem
- SAT has very efficient solvers
 - MiniSAT, CHAFF, GRASP, etc.
- For Optimization cases, we can formulate them as
 - Satisfiability Modulo Theories (SMT) with arithmetic and first order logic —
 - − 0/1 or Integer Linear Programming (ILP)
 - Constraint Programming Problems
 - SMT Solvers: Z3, Yices, Barcelogic, MathSAT, OpenSMT, etc



Thank you